[In reverse chronological order. For a complete list of publications from the Harter lab, see here]


Henri, C.V. and T. Harter, 2022. Denitrification in heterogeneous aquifers: Relevance of spatial variability and performance of homogenized parameters. Adv. in Water Resour. 164, 104168, (open access)

Kourakos, G. and T. Harter, 2021. Simulation of unconfined aquifer flow based on parallel adaptive mesh refinement. Water Resour. Res. 57(12), e2020WR029354, (open access)

Castaldo, G., A. Visser, G.E. Fogg, T. Harter, 2021. Effect of groundwater age and recharge source on nitrate concentrations in domestic wells in the San Joaquin Valley. Env. Sci. Technol. 55(4):2265-2275, doi:10.1021/acs.est.0c03071 (open access)

Pauloo, R.A., G.E. Fogg, Z. Guo, T. Harter, 2021. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrology 593, 125787, doi:10.1016/j.jhydrol.2020.125787 (open access)

Henri, C.V., T. Harter, E. Diamantopoulos, 2021. Stochastic assessment of the effect of land-use change on nonpoint source-driven groundwater quality using an efficient scaling approach. Stochastic Environmental Research and Risk Assessment 35(5):959-970, doi:10.1007/s00477-020-01869-y (open access)

Gurevich, H., S. Baram, T. Harter, 2021. Measuring nitrate leaching across the critical zone at the field to farm scale. Vadose Zone Journal, 20, e20094, doi:10.1002/vzj2.20094 (open access)

Bastani, M., T.Harter, 2020. Effects of upscaling temporal resolution on groundwater nitrate transport model performance at the regional management scale. Hydrogeology J. 28:1299–1322., doi:10.1007/s10040-020-02133-x (open access)

Henri, C., T. Harter, 2020. On the conceptual complexity of non-point source management: Impact of spatial variability. Hydrol. Earth Syst. Sci. 24: 1189–1209, doi:10.5194/hess-24-1189-2020 (open access)

Kourakos, G., H.E. Dahlke, T. Harter, 2019. Increasing groundwater availability and seasonal baseflow through agricultural managed aquifer recharge in an irrigated basin. Water Resour. Res. 55(9):7464-7492, doi:10.1029/2018WR024019 (open access)

Bastani, M. and T. Harter, 2019. Source area management practices as remediation tool to address groundwater nitrate pollution in drinking supply wells. J.Contam.Hydrol. 226, 103521, doi:10.1016/j.jconhyd.2019.103521 (open access)

Henri, C. and T. Harter, 2019. Stochastic assessment of nonpoint source contamination: Joint impact of aquifer heterogeneity and well characteristics on management metrics. Water Resources Research 55(8):6773-6794, doi:10.1029/2018WR024230 (open access)

Tolley, D., L. Foglia, T. Harter, 2019. Sensitivity analysis and calibration of an integrated hydrologic model in an irrigated agricultural basin with a groundwater-dependent ecosystem. Water Resour. Res. 55(9):7876-7901, doi:10.1029/2018WR024209 (open access)

Ghasemizade, M., K.O. Asante, C. Petersen, T. Kocis, H.E. Dahlke, and T. Harter, 2019. An integrated approach toward sustainability via groundwater banking in the southern Central Valley, California. Water Resources Research, 55. doi:10.1029/2018WR024069. (pdf file for personal use only)

Ransom, K.M., A.M. Bell, Q.E. Barber, G. Kourakos, and T.Harter, 2018. A Bayesian approach to infer nitrogen loading rates from crop and land-use types surrounding private wells in the Central Valley, California. Hydrol. Earth Syst. Sci., 22:2739-2758, 2018, doi:10.5194/hess-22-2739-2018.

Foglia, L., J. Neuman, D.G. Tolley, S.B. Orloff, R.L. Snyder, and T. Harter, 2018. Modeling guides groundwater management in a basin with river-aquifer interactions. California Agriculture 72:1, 84-95.

Harter, T., K. Dzurella, G. Kourakos, A. Hollander, A. Bell, N. Santos, Q. Hart, A.King, J. Quinn, G. Lampinen, D. Liptzin, T. Rosenstock, M. Zhang, G.S. Pettygrove, and T. Tomich, 2017. Nitrogen Fertilizer Loading to Groundwater in the Central Valley. Final Report to the Fertilizer Research Education Program, Projects 11-0301 and 15-0454, California Department of Food and Agriculture and University of California Davis, 325p.

Ransom, K.M., B.T. Nolan, J.A. Traum, C.C. Faunt, A.M. Bell, J.M. Gronberg, D.C. Wheeler, C.Z. Rosecrans, B.Jurgens, G.E. Schwarz, K. Belitz, S.M. Eberts, G. Kourakos, and T. Harter, 2017. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA, Science of The Total Environment, Volumes 601–602 (1), p. 1160-1172, doi:10.1016/j.scitotenv.2017.05.192  (open access).

Baram, S., V. Couvreur, T. Harter, M. Read, P.H. Brown, M. Kandelous, D.R. Smart, and J.W. Hopmans, 2016. Estimating Nitrate Leaching to Groundwater from Orchards: Comparing Crop Nitrogen Excess, Deep Vadose Zone Data-Driven Estimates, and HYDRUS Modeling. Vadose Zone J. 15(11):1-13. doi:10.2136/vzj2016.07.0061 (open access).

Ransom, K. M., M. N. Grote, A. Deinhart, G. Eppich, C. Kendall, M. E. Sanborn, A. K. Souders, J. Wimpenny, Q.-Z. Yin, M. Young, and T. Harter, 2016. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers, Water Resour. Res., 52, 5577–5597, doi:10.1002/2015WR018523 (open access).

Baram S., V. Couvreur, T. Harter, M. Read, P.H. Brown, J.W. Hopmans, D.R. Smart, 2016. Assessment of orchard N losses to groundwater with a vadose zone monitoring network. Agricultural Water Management 172:83-95. doi:10.1016/j.agwat.2016.04.012 

Mayzelle, M. M., J. H. Viers, J. Medellin-Azuara, and T. Harter, 2015. Economic feasibility of irrigated agricultural land use buffers to reduce groundwater nitrate in rural drinking water sources. Water 7(1):12-37, doi: 10.3390/w7010012 (open access).

Kourakos, G., and T. Harter, 2014. Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners. Comput. Geosci. 18(5):851-867, doi:10.1007/s10596-014-9430-2.

Rosenstock, T. S., D. Liptzin, K. Dzurella, A. Fryjoff-Hung, A. Hollander, V. Jensen, A. King, G. Kourakos, A. McNally, G. S. Pettygrove, J. Quinn, J. H. Viers, T. P. Tomich, and T. Harter, 2014. Agriculture's contribution to nitrate contamination of Californian groundwater (1945-2005), J. Env. Qual. 43(3):895-907, doi:10.2134/jeq2013.10.0411 (open access).

Kourakos, G. and T. Harter, 2014. Vectorized simulation of groundwater flow and streamline transport. Environmental Modelling & Software 52:207-221, doi:10.1016/j.envsoft.2013.10.029.

Lockhart, K.M., A. M. King, T. Harter, 2013. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 151:140-154, doi:10.1016/j.jconhyd.2013.05.008 (pdf file for personal use only).

Botros, F.E., Y.S. Onsoy, T.R. Ginn, and T. Harter, 2012. Richards equation-based modeling to estimate flow and nitrate transport in a deep alluvial vadose zone, Vadose Zone Journal Vol. 11(4), doi:10.2136/vzj2011.014 (free public access).

Kourakos, G., F. Klein, and T. Harter, 2012. A GIS-linked unit response function approach to stochastic groundwater nonpoint source pollution modeling, Models - Repositories of Knowledge, IAHS Publications (Red Book Series #355), 2013. 8 pages.

Bremer, J. and T. Harter, 2012. Domestic wells have high probability of pumping septic tank leachate, Hydrol. Earth Sys. Sci 16:2453-2467, doi:10.5194/hess-16-2453-2012 (free public access).

Kourakos, G., F. Klein, A. Cortis, and T. Harter, 2012, A groundwater nonpoint source pollution modeling framework to evaluate long-term dynamics of pollutant exceedance probabilities in wells and other discharge locations,Water Resour. Res., 48, W00L13, doi:10.1029/2011WR010813.

Horn, J. and T. Harter, 2009. Domestic well capture zone and influence of the gravel pack length. Ground Water 47(2):277-286. (pdf file for personal use only)